Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae

نویسندگان

  • Stephanie L Begg
  • Bart A Eijkelkamp
  • Zhenyao Luo
  • Rafael M Couñago
  • Jacqueline R Morey
  • Megan J Maher
  • Cheryl-Lynn Y Ong
  • Alastair G McEwan
  • Bostjan Kobe
  • Megan L O'Mara
  • James C Paton
  • Christopher A McDevitt
چکیده

Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth's crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective efficacy of Streptococcus thermophilus against acute cadmium toxicity in mice

Cadmium (Cd) is a highly toxic heavy metal, wide occupational and an environmental pollutant, affecting human health. Probiotics especially lactic acid bacteria (LAB) have the capacity to bind, remove and to decrease tissue cadmium levels. The objective was to evaluate the potency of Cd binding capacity, antioxidative properties of probiotic bacteria against cadmium in vitro and its probable de...

متن کامل

Protective efficacy of Streptococcus thermophilus against acute cadmium toxicity in mice

Cadmium (Cd) is a highly toxic heavy metal, wide occupational and an environmental pollutant, affecting human health. Probiotics especially lactic acid bacteria (LAB) have the capacity to bind, remove and to decrease tissue cadmium levels. The objective was to evaluate the potency of Cd binding capacity, antioxidative properties of probiotic bacteria against cadmium in vitro and its probable de...

متن کامل

Effect of Cadmium on Germination Characters and Biochemical Parameters of Two Iranian Ecotypes of Cumin (Cuminum cyminum L.)

Cadmium (Cd), being a highly toxic metal pollutant of soils, it inhibits root and shoot growth and yield production, affects nutrient uptake and homeostasis. It is frequently accumulated by agriculturally important crops and then enters the food chain with a significant potential to impair animals and human’s health. Therefore, a study was conducted to evaluate the effects of various Cd levels ...

متن کامل

The First Histidine Triad Motif of PhtD Is Critical for Zinc Homeostasis in Streptococcus pneumoniae.

Streptococcus pneumoniae is the world's foremost human pathogen. Acquisition of the first row transition metal ion zinc is essential for pneumococcal colonization and disease. Zinc is acquired via the ATP-binding cassette transporter AdcCB and two zinc-binding proteins, AdcA and AdcAII. We have previously shown that AdcAII is reliant upon the polyhistidine triad (Pht) proteins to aid in zinc re...

متن کامل

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015